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Abstract. Modal logics forms a family of formalisms widely used as
reasoning frameworks in diverse areas of computer science. Description
logics and their application to the web semantic is a notable example.
Also, description logics have been recently used as a reasoning model
for context-aware systems. Most reasoning algorithms for modal (de-
scription) logics are based on tableau constructions. In this work, we
propose a reasoning (satisfiability) algorithm for the multi-modal Km

with converse. The algorithm is based on the finite tree model property
and a Fischer-Ladner construction. We show the algorithm is sound and
complete, and we provide the corresponding complexity analysis. We also
present some exploratory results of a preliminary implementation of the
algorithm.
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1 Introduction

Modal logics forms a family of formalism including temporal, dynamic, epistemic
and description logics. These formalisms have been widely used as reasoning
frameworks in diverse areas of computer science, such as artificial intelligence,
databases, program analysis, distributed computing, etc. [17, 15, 10]. The appli-
cation of description logics as knowledge representation framework (language and
reasoning for ontologies) in the semantic web is a notable example [3]. In recent
years, due to the well-known excellent balance between the expressive power of
description logic and the computational complexity of the associated algorithms,
context aware computing inference systems have been studied in the modal
(descriptive) setting [8, 6]. However, current context aware systems, which are
supposed to efficiently interact with a legion of context variables, still demands
more expressive power without performance detriment [8]. Motivated by the
development of expressive context aware inference systems, as an starting point,
we propose in the current work a reasoning algorithm for the multimodal logic
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Km with converse, which can be seen as a syntactic variant of the description
logic ALCI.

The basic modal logic K can be syntactically introduced as classical proposi-
tional logic extended with constructors for expressing modalities, such as possi-
bility and necessity. From the seminal work of van Benthem [7], we know modal
logic forms an important fragment of first order logic. The importance of this
fragment comes from the associated well known and behaved computational
properties, such as model checking and satisfiability. A possible explanation
of this nice and robust computational behavior, provided by van Benthem [7],
is that modal logic cannot distinguish bisimilar models. Another explanation
comes from Vardi [20], and it concerns the tree model property of the logic. In
the current work, we follow the second approach, more precisely, we propose a
satisfiability algorithm for modal logic based on its finite tree model property.
The algorithms actually builds candidate trees in the style of Fischer-Ladner [4,
5]. Moreover, the algorithm works for the modal logic extended with multi-
modalities Km, including converse modalities, known in description and dynamic
logics as inverse roles and programs, respectively.

We distinguish two types of techniques in the development of modal reason-
ers: purpose-built and translational. Most of purpose-built translational tools
are based on tableau constructions [13, 12, 19, 11], however, there are other few
methods, such as sequent calculus [21] and coalgebras [9]. In the translational
methods, we may find translations to SAT solvers [18], to first order logic [14, 2],
including SMT and QBF solvers [1, 16], respectively. In [16], it is also presented a
translation of modal logic formulas to types, which can be seen as an on-the-fly
construction of the corresponding automaton. For the current work, we focus
on the purpose-built approach. In particular, the proposed algorithm is based
in the finite tree model property of modal logic. More precisely, the algorithm
performs a Fischer-Ladner construction of candidate trees. Although there are
already highly optimized modal solvers successfully working in practice [13, 12],
to the best of our knowledge, this is the first reasoning algorithm based on the
finite tree model property.

The paper is organized as follows: in Section 2, we describe the multimodal
logic Km with converse; the finite tree model property of the logic is studied
in Section 3; in Section 4, a satisfiability algorithm is described in terms of
Fischer-Ladner constructions of trees, it is also shown the algorithm is correct,
that is, sound and complete, and a complexity analysis is also provided; we
conclude in Section 5 with a summary of the current work and a discussion on
further research perspectives.

2 Preliminaries

In the current section, we define the propositional multimodal logic Km with
converse. Whereas syntax of the logic is defined as boolean combination of
propositions and modal constructors, formula semantics is described in terms
of Kripke (relational) structures.
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2.1 Multimodal logic Km with converse

We assume a fixed alphabet (P,M), where P is a countable set of proposition
variables and M is a finite set of modalities. We also assume there is a bijection
partitioning the set of modalities. We write m to denote the inverse of a modality
m.

Definition 1 (Syntax). The set of modal formulas is defined by the following
grammar:

φ := p | ¬φ | φ ∨ φ | 〈m〉φ

where p ranges over propositions and m over modalities

Formulas are interpreted as subset nodes on Kripke structures, which can
be intuitively seen as labeled directed graphs. Propositions serve as node labels,
whereas negation and disjunction are interpreted as the complement and union
of sets, respectively. Existential modal formulas 〈m〉φ holds in nodes able to
access through m to a node belonging to the interpretation of φ.

Other classical syntactic sugar is also considered: tautologies > := φ ∨ ¬φ;
contradictions ⊥ := ¬>; conjunctions φ∧ψ := ¬ (¬φ ∨ ¬ψ); and universal modal
formulas [m]φ := ¬ 〈m〉 ¬φ. These shorthands are interpreted as expected,
in particular, universal modal formulas [φ] denote the nodes where all their
accessible nodes through m support φ.

Before giving a formal semantics of modal formulae, we give a precise notion
of Kripke structures.

Definition 2 (Kripke structure). A Kripke structure is a tuple K = (N,R,L),
where: N is a non-empty and countable set of nodes; R is a family of binary
relations Rm : N × N , written n ∈ R(n,m) for each modality m; and L is a
left-total labeling function L : N 7→ 2P .

We now give a precise notion of formula semantics.

Definition 3 (Semantics). Given a Kripke structure K = (N,R,L), modal
formulas are interpreted as follows:

[[p]]
K

= {n | p ∈ L(n)}

[[¬φ]]
K

=N \ [[φ]]
K

[[φ ∨ ψ]]
K

= [[φ]]
K ∪ [[ψ]]

K

[[〈m〉φ]]
K

=
{
n | R(n,m) ∩ [[φ]]

K 6= ∅
}

We say a formula φ is satisfiable, if and only if, there is a Kripke structure
K such that the interpretation of φ with respect to K is not empty, that is,
[[φ]]

K 6= ∅. In such a case, we also say K is a model of φ. If any Kripke structure
is a model of φ, we say φ is valid. We say two formulas φ and ψ are equivalent,
if and only if, their interpretations coincide for any Kripke structure K, that is,
[[φ]]

K
= [[ψ]]

K
.
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The negation normal form of a formula is an equivalent formula where nega-
tion only occurs in front of propositions. In order to give a precise notion of the
negation normal form, we then consider the following definition.

Definition 4. Given a modal formula φ, its negation in normal form nnf(φ) is
inductively defined as follows:

nnf(p) =¬p
nnf(φ ∨ ψ) =nnf(φ) ∧ nnf(ψ)

nnf (〈m〉φ) = [m] nnf(φ)

The negation normal form of a formula φ is defined by φ
[
nnf(ψ)/¬ψ

]
. Then,

in order to consider formulas in negation normal form only, we need to consider
an extension of the logic with conjunctions and universal modal formulas with
the expected semantics.

Proposition 1. A formula and its negation normal form are equivalent.

Hence, with out loss of generality, we consider now formulas in negation
normal form.

3 The Tree Model Property

In this Section, we provide a description of the finite tree model property: if a
formula is satisfiable, then it is also satisfiable in a finite tree shaped Kripke
structure.

Definition 5. Given a formula φ and a Kripke structure K = (N,R,L) satis-
fying φ in a node n ∈ N , we inductively define the following finite tree shaped
Kripke structure σ (φ,K, n) = (σ (N) , σ (R) , σL) as follows:

– the root is σ(n) ∈ σ (N), in case σ(n) has already been added in a previous
step, then a fresh copy of σ(n) is considered;

– in case φ is a proposition p, then p ∈ σ (L(σ(n)));
– if φ is a negation ¬p, p 6∈ σ (L(σ(n)));
– when φ is a disjunction ψ∨ϕ, then we know that n satisfies ψ or ϕ, in case n

satisfies ψ, then σ (φ,K, n) is defined by σ (ψ,K, n), otherwise, it is defined
by σ (ϕ,K, n);

– if it is the case that φ is a conjunction ψ ∧ ϕ, then σ (φ,K, n) is defined by
the two branched tree formed by σ (ψ,K, n) and σ (ϕ,K, n) with σ(n) as the
common root.

– if φ is an existential modal formula 〈m〉φ, then σ (φ,K, n) is formed by

σ (ψ,K, n), such that for a node n′ ∈ R(n,m) ∩ [[ψ]]
K

, σ (n′) ∈ σ(R(σ,m))
and σ (n′) is the root of σ (ψ,K, n);

– the case of universal modal formulas [m]ψ is similar as the previous one, but

the construction is done with respect to each node n′ ∈ R(n,m) ∩ [[ψ]]
K

.
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Theorem 1 (Finite tree model property). For any formula φ and Kripke
structure K, we have that

n ∈ [[φ]]
K

if and only if σ(n) ∈ [[φ]]
σ(φ,K,n)

By Definition 5, the proof goes smoothly by structural induction on φ. Also,
it is clear that σ (φ,K, n) is finite and tree shaped.

4 Satisfiability

In this Section, we describe a satisfiability algorithm for the multi-modal Km

with converse, that is, given a formula, the algorithm decides whether or not
the input formula is satisfiable. Recall that if a formula is satisfiable, then the
formula is satisfiable by a tree shaped Kripke structure. Then, the algorithm
builds candidate trees in a bottom-up manner: starting from the leaves, the
algorithm adds parents iteratively and consistently until a satisfying tree is
found. The representation of trees is in the style of Fischer-Ladner [4, 5]. Before
defining the algorithm, we first need some notation.

Definition 6. . We define the following binary relation RFL on formulas with
i = 1, 2 as follows:

RFL (φ1 ◦ φ2, φ) RFL (〈m〉φ, φ) RFL ([m]φ, φ)

where ◦ ∈ {∧,∨} and i = 1, 2.

We now define the Fischer-Ladner closure.

Definition 7 (Fischer Ladner Closure). Given a formula φ, the Fischer-Ladner
closure of φ, written FL(ϕ), is defined as Fk(φ) for the smallest k, such that
Fk(φ) = Fk+1(φ), where

FL0(ϕ) ={ϕ}
FLi+1(ϕ) =FLi(ϕ) ∪ {ψ′ | RFL(ψ,ψ′), ψ ∈ FLi(ϕ)}

for i > 0.

The Fischer-Ladner representation of leaves, and hence trees, is based in the
lean set, which is now defined.

Definition 8 (Lean). Given a formula φ, its lean is defined as the set composed
by proposition and modal subformulas of φ, together with formulas 〈m〉>, for
every m occurring in φ, and p′ which is a proposition not occurring in φ. More
precisely,

lean(ϕ) = {p, 〈m〉ψ, [m]ψ ∈ FL(ϕ)} ∪ {〈m〉>, p′}

We are now ready to define the set of nodes in Fischer-Ladner trees.
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Algorithm 1 Satisfiability algorithm.

Y ← Nφ

X ← Leaves(Y )
X0 ← ∅
while X 6= X0 do

if X ` φ then
return true

end if
X0 ← X
(X,Y )← Update(X,Y )

end while
return false

Definition 9 (Nodes). Given a formula φ, a φ-node, or simply a node, is defined
as a lean subset with the following constraints:

– at least one proposition occurs in it; and
– if 〈m〉ψ occurs, then 〈m〉> also does.

The set of nodes corresponding to a given formula φ is written Nφ.

Definition 10 (Fischer-Ladner tree). Given a formula φ, a φ-tree T , or simply
a tree, is inductively defined as follows:

– the empty set is a tree;
– the tuple (n, T1, . . . , Tn) is a tree, provided that n is a node, called the root,

and Ti (i = 1, . . . , n) are trees.

The algorithm corresponding to the satisfiability of formulas is defined in
Algorithm 1.

We now give a precise description of each notion involved in the algorithm.
We first define the set of leaves as the trees (n, ∅), where n does not contain

formulas of the form 〈m〉φ. Then, Leaves(N) for a set of nodes N , contains all
the leaves in N .

We now define the entailment relation between nodes and formulas.

Definition 11. Given a formula φ and a node n, we inductively define the
entailment relation n ` as follows:

φ ∈ n
n ` φ

p 6∈ n
n ` ¬p n ` >

n ` φ and n ` ψ
n ` φ ∧ ψ

n ` φ or n ` ψ
n ` φ ∨ ψ

.

Abusing of notation, we extend the notion of entailment between trees T =
(n, T1, . . . , Tn) and formulas φ, written T ` φ, when n ` φ. This notion is also
extended to set of trees X, written X ` φ, when there is a tree T ∈ X, such
that T ` φ. The complement of this relation 6` is defined as expected.
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The Update(X,Y ) function, for a set of trees X and a set of nodes Y , adds
parents in Y to trees in X in a consistent manner. This results in a pair (X ′, Y ′),
where X ′ is the new set of trees and Y ′ is the new set of nodes (the nodes used
as parents are removed).

Definition 12. Given a formula φ, a set of trees X and a set of nodes Y , we
define the Update function as follows

Update(X,Y ) = (X ′, Y ′)

where
X ′ = {(n, T1, . . . , Tn) | n ∈ Y,∆m(n, Ti)}

for each i = 1, . . . , n and m occurring in φ, and where

∆m(n, T ) =


true if ∀ 〈m〉ψ ∈ lean(φ) : 〈m〉ψ ∈ n iff n′ ` ψ

∀ [m]ψ ∈ lean : [m]φ, 〈m〉> ∈ n iff n′ ` ψ
[m]ψ ∈ n, 〈m〉> 6∈ n iff n′ 6` ψ

false otw.

where n′ is the root of T , and

Y ′ = Y \ {n | n is the root of tree in X ′}

Notice that Update is a monotone function, hence, it has a fixed-point.
We now show the algorithm is correct. This is shown through soundness and
completeness.

Theorem 2 (Soundness). Given a formula φ, if the algorithm returns true,
then φ is satisfiable.

Proof. If the algorithm returns true, we know there is a tree T = (n, T1, . . . , Tn)
entailing φ, that is, T ` φ. We now construct a tree shaped Kripke structure
K = (N,R,L) from T , satisfying φ.

– N is composed by each node in T ;
– for each subtree T ′ = (n′, T ′

1, . . . , T
′
k) in T and for each i = 1, . . . , k, n′′ ∈

R(n′,m), such that n′′ is the root of T ′
i and ∆m(n′, n′′); and

– for each node n′ in N and each proposition p ∈ lean(φ), if p ∈ n′, then
p ∈ L(n′).

That K satisfies φ is proven by a straightforward structural induction, due to
the soundness of relations ∆ and `.

Theorem 3 (Completeness). If a satisfiable formula φ is given to the algo-
rithm, then the algorithm returns true.

Proof. By Theorem 1, we know there is a tree shaped Kripke structure K =
(N,R,L) satisfying φ. Moreover, K is defined as described in Definition 5.

We first show a tree T isomorphic to K entails φ. For this, we first define T
as follows:
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– for each each node n in N , there is a corresponding node τ(n) in T ;
– for each n1, n2, . . . , nk ∈ R(n,m) for anym occurring in φ, (τ(n), T1, T2, . . . , Tk)

is a subtree in T , such that τ(ni) is the root of Ti for i = 1, . . . , k;
– for each p ∈ L(n), p ∈ τ(n);

– for each 〈m〉ψ,∈ lean(φ), if n ∈ [[〈m〉ψ]]
K

, then 〈m〉ψ ∈ τ(n), the same
applies for formulas [m]ψ in the lean; and finally,

– for each τ(n) in T , if 〈m〉ψ ∈ τ(n), then 〈m〉> ∈ τ(n).

By a straightforward structural induction on φ, it is shown that T ` φ (recall φ
is satisfied in the root of K).

We now show T is constructed by the algorithm. This is shown by induction
on the height of K. It is clear T has the same height of K. The base case
is immediate. We now assume K has has height n, then the algorithm has
constructed trees T1, T2, . . . , Tk corresponding to the subtrees of K. Now notice
that if n > 1, then φ is of the form 〈m〉ψ or [m]ψ. Hence, considering n is
the root of K and that it is the one satisfying φ, then node τ(n) is still in Y .
By completeness of relation Delta, we know then for each m occurring in φ and
each i = 1, . . . , k, ∆m(n, ni), provided that ni is the root of Ti. We then conclude
τ(n) ` φ.

Theorem 4 (Complexity). The satisfiability algorithm is in EXPTIME.

Proof. First notice that the lean set has linear size with respect to the input
formula φ. Hence, there is an exponential number of nodes. Each node is at most
of the same size than φ. Hence, for each node n, n ` φ takes linear time. When
it comes to trees, ` is clearly at most exponential. Testing the set of trees also
takes at most exponential: it takes the sum of exponentials searches. Finally,
the exponential bound on the Update function comes from the exponentially
bounded size of its search space (nodes and trees), and from the fact that ∆ has
linear cost.

We are currently implementing a preliminary version of the algorithm in
Java language. Some exploratory results of this preliminary version are depicted
in Figure 1. We tested the implementation in a computer with the following
features: Windows 8 operating system, AMD processor A6 2.7GHz., 8Gb of
RAM. In this preliminary version, we have implemented the set of nodes in an
explicit way, which results very expensive in practice. In Figure 1, it is easy to
notice that incrementing a single modal level in the input formula, which implies
a higher tree, drastically impact in the performance of the algorithm. In order to
alleviate this issue, we plan to soon incorporate to the algorithm a non-explicit
representation of nodes, such as Binary Decision Diagrams [16].

5 Conclusions

In this paper, we introduced a satisfiability algorithm of the multi-modal logic
Km with converse. The algorithm is based on the finite tree model property
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Formula Time (milliseconds)

〈1〉 a 2153
〈1〉 a ∧ b 5180
〈1〉 a ∧ 〈2〉 b 11419
〈1〉 a ∧

〈
1
〉
b 9188

〈1〉 a ∧
〈
2
〉
b 9110

〈1〉 a ∧ 〈2〉 b ∧ c 42604
〈1〉 a ∧ 〈2〉 b ∧ ¬c 41403

〈1〉 a ∧ 〈2〉 b ∧ ¬(c ∨ d) 38937
〈1〉 〈1〉 a 157359
〈1〉 〈1〉 a ∧ b 318714
〈1〉 〈1〉 a ∧ 〈1〉 b 863249
〈1〉 〈1〉 a ∧

〈
1
〉
b 595539

〈1〉 〈1〉 a ∧ 〈2〉 b 897349
〈1〉 〈1〉 a ∧

〈
2
〉
b 904157

〈1〉 〈1〉 a ∧ 〈2〉 〈2〉 b 2043845

Fig. 1. Results of a preliminary implementation of the satisfiability algorithm.

of the logic. We also showed the algorithm is sound and complete, and that it
takes exponential time. Some exploratory results of a naive and non-optimized
implementation of the algorithm were also described.

We are currently implementing non-explicit representations of the set of
nodes. In particular, we are implementing a BDD-based version the algorithm [16].
We plan to extend the current algorithm, as described in [4, 5], to more expressive
logics, such as the µ-calculus with arithmetic constraints. We are also studying
the Description Logics counterpart of these expressive logics. This is with the
final aim to provide an efficient and expressive reasoning framework for context-
aware systems [6, 8].

Acknowledgment. This work was partially developed under the support of the
Mexican National Science Council (CONACYT) in the scope of the Cátedras
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